Nonrelativistic Lee model in three dimensional Riemannian manifolds
نویسندگان
چکیده
منابع مشابه
Non-relativistic Lee Model in Three Dimensional Riemannian Manifolds
In this work, we construct the non-relativistic Lee model on some class of three dimensional Riemannian manifolds by following a novel approach introduced by S. G. Rajeev [1]. This approach together with the help of heat kernel allows us to perform the renormalization non-perturbatively and explicitly. For completeness, we show that the ground state energy is bounded from below for different cl...
متن کاملRelativistic Lee Model on Riemannian Manifolds
We study the relativistic Lee model on static Riemannian manifolds. The model is constructed nonperturbatively through its resolvent, which is based on the so-called principal operator and the heat kernel techniques. It is shown that making the principal operator well-defined dictates how to renormalize the parameters of the model. The renormalization of the parameters are the same in the light...
متن کاملConstruction of Relativistic Lee Model in Riemannian Manifolds
We study the relativistic Lee model in static Riemannian manifolds. The model is constructed through its resolvent, which is based on the socalled principal operator and the heat kernel techniques. It is shown that making the principal operator well-defined dictates how to renormalize the parameters of the model. The underlying geometry is found not to affect the ultra-violet behavior of the th...
متن کاملPrescribing Curvatures on Three Dimensional Riemannian Manifolds with Boundaries
Let (M, g) be a complete three dimensional Riemannian manifold with boundary ∂M . Given smooth functions K(x) > 0 and c(x) defined on M and ∂M , respectively, it is natural to ask whether there exist metrics conformal to g so that under these new metrics, K is the scalar curvature and c is the boundary mean curvature. All such metrics can be described by a prescribing curvature equation with a ...
متن کاملGauge Theories on Four Dimensional Riemannian Manifolds
This paper develops the Riemannian geometry of classical gauge theories Yang-Mills fields coupled with scalar and spinor fields on compact four-dimensional manifolds. Some important properties of these fields are derived from elliptic theory : regularity, an "energy gap theorem", the manifold structure of the configuration space, and a bound for the supremum of the field in terms of the energy....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2007
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.2813026