Nonrelativistic Lee model in three dimensional Riemannian manifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-relativistic Lee Model in Three Dimensional Riemannian Manifolds

In this work, we construct the non-relativistic Lee model on some class of three dimensional Riemannian manifolds by following a novel approach introduced by S. G. Rajeev [1]. This approach together with the help of heat kernel allows us to perform the renormalization non-perturbatively and explicitly. For completeness, we show that the ground state energy is bounded from below for different cl...

متن کامل

Relativistic Lee Model on Riemannian Manifolds

We study the relativistic Lee model on static Riemannian manifolds. The model is constructed nonperturbatively through its resolvent, which is based on the so-called principal operator and the heat kernel techniques. It is shown that making the principal operator well-defined dictates how to renormalize the parameters of the model. The renormalization of the parameters are the same in the light...

متن کامل

Construction of Relativistic Lee Model in Riemannian Manifolds

We study the relativistic Lee model in static Riemannian manifolds. The model is constructed through its resolvent, which is based on the socalled principal operator and the heat kernel techniques. It is shown that making the principal operator well-defined dictates how to renormalize the parameters of the model. The underlying geometry is found not to affect the ultra-violet behavior of the th...

متن کامل

Prescribing Curvatures on Three Dimensional Riemannian Manifolds with Boundaries

Let (M, g) be a complete three dimensional Riemannian manifold with boundary ∂M . Given smooth functions K(x) > 0 and c(x) defined on M and ∂M , respectively, it is natural to ask whether there exist metrics conformal to g so that under these new metrics, K is the scalar curvature and c is the boundary mean curvature. All such metrics can be described by a prescribing curvature equation with a ...

متن کامل

Gauge Theories on Four Dimensional Riemannian Manifolds

This paper develops the Riemannian geometry of classical gauge theories Yang-Mills fields coupled with scalar and spinor fields on compact four-dimensional manifolds. Some important properties of these fields are derived from elliptic theory : regularity, an "energy gap theorem", the manifold structure of the configuration space, and a bound for the supremum of the field in terms of the energy....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2007

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.2813026